Bondage Number of Interval Graphs

B. Maheswari1
Department of Applied Mathematics,
S.P.M.Visvidyalayam,
Tirupati – 517502, A.P., India

Corresponding Author. E-mail: b.maheswari@ympmail.co.in

A. Sudhakaraiah2
Department of Mathematics,
S.V.University,
Tirupati – 517502, A.P.India

Abstract---

Among the various applications of the theory of domination, the most often discussed is a communication network. This network consists of communication links between a fixed set of sites. The problem is to select a smallest set of sites at which transmitters are placed so that every site in the network that does not have a transmitter, is joined by a direct communication link to the site, which has a transmitter. Then this problem reduces to that of finding a minimum dominating set in the graph corresponding to this network. Suppose communication network does not work due to link failure. Then the problem is, what is the fewest number of communication links such that at least one additional transmitter would be required in order that communication with all sites be possible. This leads to the introduction of the concept of bondage number of a graph. In this paper we discuss bondage number of interval graphs.

Keywords-- Interval family, Interval graph, Dominating Set, Bondage Number, Dominating Number

1. INTRODUCTION

The bondage number $b(G)$ of a non – empty graph G is the minimum cardinality among all sets of edges E_1 for which $\gamma (G - E_1) > \gamma (G)$. Here $\gamma (G)$ indicates the domination number of G. Thus, the bondage number of G is the smallest number of edges whose removal will render every minimum dominating set in G a non – dominating set in the resultant spanning subgraph. Since the domination number of every spanning subgraph of a non – empty graph G is at least as great as $\gamma (G)$, the bondage number of a non – empty graph is well defined.

This concept was introduced by Fink et. al [3] and they have studied this parameter for some standard graphs, trees and general bounds are obtained.

2. BONDAGE NUMBER – INTERVAL GRAPHS

Let $I = \{1, I_2, \ldots, I_n\}$ be an interval family where each I_i is an interval on the real line and $I_i = [a_i, b_i]$ for $i = 1,2,3,\ldots,n$. Here a_i is called the left endpoint and b_i the right endpoint of I_i. Without loss of generality, we assume that all endpoints of the intervals in I are distinct numbers between 1 and 2n. Two intervals i and j are said to intersect each other if they have non-empty intersection.

A graph $G (V, E)$ is called an interval graph if there is a one-to-one correspondence between V and I such that two vertices of G are joined by an edge in E if and only if their corresponding intervals in I intersect.

Let $I = \{1,2,\ldots,n\}$ be a given interval family where each I_i is represented by i and the intervals are labelled in the increasing order of their right endpoints. Let G be its corresponding interval graph. We assume that G is a connected graph.

Theorem1: Let G be an interval graph corresponding to the interval family I. Let $i, j \in I$ and suppose j is contained in i, $i \neq 1$ and there is no other interval that intersects j, other than i. Then $b(G) = 1$.

Proof: Let G be the interval graph corresponding to the given interval family I. Let i, j be any two intervals in I, which satisfy the hypothesis of the theorem. Then clearly $i \in D$, where D is a minimum dominating set of G because there is no other interval in I, other than i, that dominates j. Consider the edge $e = (i, j) \in G$. If we remove this edge from G, then j becomes an isolated vertex in $G - e$, as there is no other vertex in G, other than i, that is adjacent with j. Hence $\delta_j = D \cup \{j\}$ becomes a dominating set of $G - e$ and since D is a minimum dominating set of G it follows that D_j is also a minimum dominating set of $G - e$. Therefore $|D_j| = \gamma (G - e) = |D| + 1 > |D|$. Thus $b(G) = 1$.

As a special case of the above theorem, we have the following two corollaries.

Corollary 1: Let $i = 2, j = 1$, and j is contained in i. Suppose there is no interval other than i that intersects j. Then $b(G) = 1$.

Proof: Let $i = 2, j = 1$ satisfy the hypothesis of the corollary. Let $e = (1,2)$ and D be a minimum dominating set of G. The vertex 1 becomes an isolated vertex in $G - e$ as there is no vertex other than 2 that is adjacent with 1. Then $D_1 = D \cup \{1\}$ becomes a minimum dominating set of $G - e$ so that $\gamma (G - e) > \gamma (G)$. Thus $b(G) = 1$.

The proof of the following corollary follows on similar lines to that of corollary 1.

Corollary 2: Let $i = n, j = n-1$ and j is contained in i. Suppose there is no interval other than i that intersects j. Then $b(G) = 1$.
Theorem 2: Let the dominating set D of G consists of two vertices only, say u and v. Suppose u dominates the vertex set \(S_1 = \{1, \ldots, i\} \) and v dominates the vertex set \(S_2 = \{i+1, \ldots, n\} \).

1. Suppose there is no vertex in \(S_1 \) other than u that dominates \(S_1 \) and no vertex in \(S_2 \) other than v that dominates \(S_2 \). Then \(b(G) = 1 \).

2. Suppose there is one more vertex \(x \in S_1 \) (or \(S_2 \)) that dominates \(S_1 \) (or \(S_2 \)). Then \(b(G) = 1 \).

Proof: 1. Let \(D = \{u, v\} \). Suppose u and v satisfy the hypothesis of the theorem. Since u alone dominates \(S_1 \), there is no vertex in \(S_2 = \{1, \ldots, i\} \setminus \{u\} \) that can dominate \(S_1 \). Let \(j \) be any vertex in \(S_1 \) and \(e = (u, j) \). Consider the graph \(G - e \). In this graph, u dominates every vertex in \(S_1 \) except \(j \). Now consider a vertex in \(S_1 \) which is adjacent with \(j \), say \(k \). Then clearly the set \(\{u, k\} \) dominates the set \(S_1 \) in \(G - e \). If there is no vertex in \(S_1 \) that is adjacent with \(j \), then clearly the graph \(G \) becomes disconnected. So there is at least one vertex in \(S_1 \) that is adjacent with \(j \). Let us assume that there is a single vertex say \(w \). \(w \neq u \) such that \(w \) dominates the set \(S_1 \) in \(G - e \). This implies that \(w \) also dominates the set \(S_1 \) in \(G \), a contradiction, because by hypothesis u is the only vertex that dominates the set \(S_1 \) in \(G \). Hence a single vertex cannot dominate \(S_1 \) in \(G - e \).

Thus \(D_1 = D \cup \{k\} \) becomes a dominating set of \(G - e \). Since \(D \) is minimum in \(G \), \(D_1 \) is also minimum in \(G - e \), so that \(\gamma(G - e) > \gamma(G) \). Hence \(b(G) = 1 \). A similar argument with vertex v also gives \(b(G) = 1 \).

2. Let \(D = \{u, v\} \) and u dominates \(S_1 \) and v dominates \(S_2 \). Let \(x \in S_1 \) be such that \(x \) also dominates \(S_1 \). Let \(e = (u, x) \). Consider the graph \(G - e \). In this graph the vertices u and x are not adjacent. Hence u alone cannot dominate the set \(S_1 \) in \(G - e \). We require at least two vertices in \(S_1 \), which dominate \(S_1 \) in \(G - e \). Therefore the dominating set of \(G - e \) contains more than two vertices. Thus \(\gamma(G - e) > \gamma(G) \). Hence \(b(G) = 1 \). Similar is the case if \(x \in S_2 \).

Theorem 3: Let \(D = \{u, v\} \). Suppose u dominates \(S_1 = \{1, \ldots, i\} \) and v dominates \(S_2 = \{i+1, \ldots, n\} \). Suppose there are two vertices say \(w_1, w_2 \in S_1 \) or \(S_2 \) such that \(w_1, w_2 \) also dominate \(S_1 \) or \(S_2 \) respectively. Then \(b(G) = 3 \).

Proof: Let \(D = \{u, v\} \) and u, v satisfy the hypothesis of the theorem. Suppose \(w_1, w_2 \in S_1 \) and \(w_1, w_2 \) also dominate \(S_1 \). Let \(k \) be an arbitrary vertex in \(S_1 \), \(k \neq i, u, w_1, w_2 \). Now delete the edges \(uk, w_1k, w_2k \) that are incident with \(k \) from \(G \). If \(d(k) = 3 \), then \(k \) becomes an isolated vertex in \(G_1 = G - \{uk, w_1k, w_2k\} \). Thus \(D_1 = D \cup \{k\} \) becomes a dominating set of \(G_1 \) and since \(D \) is minimum it follows that \(D_1 \) is minimum in \(G_1 \). Hence \(\gamma(G_1) = \gamma(G) \) and hence \(b(G) = 3 \).

Suppose \(d(k) > 3 \). Then there is at least one vertex, say \(j \) in \(S_1 \) such that \(j \) is adjacent to \(k \) and \(j \neq u, w_1, w_2 \). Let \(G_1 = G - \{uk, w_1k, w_2k\} \). In \(G_1 \), \(k \) is not dominated by \(u, w_1, w_2 \), but is dominated by \(j \). Further every vertex in \(S_1 \) other than \(k \) is dominated by \(u \) or \(w_1 \) or \(w_2 \) in \(G_1 \). Therefore every vertex in \(S_1 \) is dominated by \(\{u, j\} \) or \(\{w_1, j\} \) or \(\{w_2, j\} \) in \(G_1 \). Thus \(D_1 = D \cup \{j\} \) becomes a dominating set of \(G_1 \) and since \(D \) is minimum in \(G \) it follows that \(D_1 \) is also minimum in \(G_1 \). Hence \(\gamma(G_1) = \gamma(G) \) so that \(b(G) = 3 \). Similar is the case if \(w_1, w_2 \in S_2 \).

Theorem 4: Let \(D = \{u, v, w\} \). Suppose u dominates \(S_1 = \{1, \ldots, i\} \), v dominates \(S_2 = \{i+1, \ldots, j\} \), \(w \) dominates \(S_3 = \{j+1, \ldots, n\} \).

1. There are no other vertices in \(S_1 \) or \(S_2 \) or \(S_3 \) that dominate the sets respectively. Then \(b(G) = 1 \).

2. Suppose there is one more vertex \(x \in S_1 \) or \(S_2 \) or \(S_3 \) that dominates \(S_1 \) or \(S_2 \) or \(S_3 \) respectively. Then \(b(G) = 1 \).

Proof: 1. The proof is similar to that of case 1 in Theorem 2.

2. The proof is similar to that of case 2 in Theorem 2.

Theorem 5: Let \(D = \{u, v, w\} \). Suppose u dominates \(S_1 = \{1, 2, \ldots, i\} \), v dominates \(S_2 = \{i+1, \ldots, j\} \), and \(w \) dominates \(S_3 = \{j+1, \ldots, n\} \). Suppose there are two vertices say \(w_1, w_2 \in S_1 \) or \(S_2 \) or \(S_3 \) such that \(w_1, w_2 \) also dominate \(S_1 \) or \(S_2 \) or \(S_3 \) respectively. Then \(b(G) = 3 \).

Proof: The proof is similar to that of Theorem 3.

II. CONCLUSION

we study the Bondage number of an Interval graph corresponding to an Interval family I. Given an interval model with end points sorted.
III. ACKNOWLEDGEMENT

The Author is grateful to the referees for their voluble comments which have lead to improvements in the presentation of the paper. This research was supported impart by the S.V.University, Tirupati, India.

REFERENCES